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Therefore the connectivities involving the Gly55 a-protons and 
the P56 7-protons are obscured by the intense /3-proton connec­
tivities in Figure lb,c. 

The long-range connectivities in Figure 1, that link Pro residues 
to remote residues in the sequence, are consistent with reported4 

Nase assignments and the distances calculated from the crystal 
structure.7 These results are further evidence that there is a close 
correspondence between the solution and crystal structure of the 
ternary complex throughout most of the protein, as concluded 
previously .4'10,11 

The isotope editing approach described herein should be a 
generally useful method of assigning proline spin systems in 
moderate size proteins. Labeling with [3,5-13C2]proline should 
improve the efficiency of the method, because all relevant in­
formation could be obtained by using one double-labeled sample. 
The double-labeled proline could be synthesized by following the 
scheme used to obtain [4-13C]proline.12 
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Cis-trans isomerization of X-prolyl peptide bonds is now 
considered as both a major determinant of the rate of protein 
folding and an explanation for the existence of multiple folded 
forms of proteins in solution.1"3 Indirect evidence for these effects 
of prolyl peptide bonds has been recently obtained by examining 
the properties of mutant proteins in which specific prolyl residues 
have been replaced by site-directed mutagenesis techniques. For 
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Figure 1. 1H-13C heteronuclear chemical shift correlation spectra of 
wild-type SNase (left panel) and its Pl 17G mutant (right panel) labeled 
with [4-13C]proline. The data were obtained in proton detection exper­
iments of 1H-13C chemical shift correlations at pH 5.5 and 40 0C.17 

Assignments are made in the text. 

example, by investigating substitutions for specific proline residues, 
Richards and co-workers have deduced that isomerization of a 
single prolyl peptide bond is the rate-determining step in the folding 
of thioredoxin from Escherichia coli.* Also, Dobson and Fox 
have implicated cis and trans isomers of a single prolyl peptide 
bond in staphylococcal nuclease (SNase) as the explanation for 
the coexistence of multiple folded forms of the protein.5"7 

However, the conclusions reached in these and all other solution 
studies of isomerization of prolyl peptide bonds in proteins have 
not been based on the observation of cis prolyl peptide bonds but 
on the effects of this putative isomerization on biophysical 
properties such as the rates of folding and the 1H NMR spectra 
of the resolved histidine Hf resonances. In this communication 
we report observation and assignment of selected 1H and 13C NMR 
resonances of a single proline cis X-prolyl peptide bond in SNase. 

A number of studies of the resonances of the resolved H, protons 
of the four histidine residues in SNase have suggested the presence 
of an equilibrium mixture of two monomeric folded forms since 
two resonances are detected for each of these protons.5"10 In­
vestigation of the temperature dependence of these resonances 
reveals that the multiplicity is preserved in the unfolded form. 
In the presence of the active site ligands Ca2+ and thymidine 
3',5'-bisphosphate (pdTp), the multiplicity of resonances in the 
folded state is eliminated. Crystallographic studies of SNase 
complexed with the active-site ligands have revealed that the 
peptide bond between Lys 116 and Pro 117 is cis whereas the 
remaining six X-prolyl peptide bonds are trans.11 The 1H NMR 
spectrum of the aromatic region of the site-directed mutant in 
which Pro 117 is replaced with a glycine residue (Pl 17G) reveals 
only a single resonance for each H, proton. The simplest expla­
nation for these observations is that the two folded forms of 
unliganded SNase in solution as detected by 1H NMR spec­
troscopy can be associated with a major cis and a minor trans 
isomer of the Lys116-Proln peptide bond. However, the 1H NMR 
spectrum of Pl 17G differs from that of the wild-type enzyme, 
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suggesting that the solution structure of the mutant protein may 
differ from that of the wild type.12 In addition, a number of amino 
acid replacements remote from Pro 117, both within the active 
site12 and elsewhere,9 alter the equilibrium between the confor­
mational forms revealed by the He protons. These last two ob­
servations suggest the desirability of additional information about 
the presence of a cis prolyl peptide bond in SNase in solution. 

We have obtained additional evidence for the presence of a cis 
prolyl peptide bond involving Pro 117 in wild-type SNase by using 
samples of wild type and the P117G mutant biosynthetically 
labeled with [4-13C]proline.13,14 Previous studies have shown that 
the 13C NMR chemical shift of the labeled 4-carbon in a cis 
X-prolyl peptide bond is about 3 ppm upfield of the labeled carbon 
in a trans peptide bond.15 We have used proton detection 
methodology16 to observe the 13C resonances in the labeled proteins. 

1H-13C heteronuclear chemical shift spectra of the labeled 
samples of wild-type SNase and its Pl 17G mutant obtained at 
40 0C in the absence of the active-site ligands Ca2+ and pdTp 
are reproduced in Figure 1. The intense correlations at 13C 
chemical shifts of 28 ppm in both spectra are characteristic of 
proline residues in trans peptide bond geometries. Prolines in cis 
peptide bond geometries are expected to be approximately 3 ppm 
upfield of these correlations.15 Although several correlations 
associated with natural abundance 13C nuclei are present in these 
spectra (as evidenced by spectra obtained on unlabeled samples), 
the correlation having a 13C shift of 25.7 ppm and a 1H shift of 
2.1 ppm in the spectrum of wild-type SNase is associated with 
the labeled proline and, therefore, can be assigned to proline in 
a cis peptide bond geometry. The correlations associated with 
prolines in trans peptide bond geometries in Pl 17G show small 
changes in dispersion in both the 13C and 1H dimensions, but it 
is clear that the correlation associated with proline in a cis peptide 
bond geometry is missing. Our experiments do not allow a 
quantitative measure of the position of the cis/trans equilibrium 
but reveal that the cis isomer predominates. Thus, the proline 
residue participating in a cis peptide bond is Pro 117. 

These experiments provide persuasive experimental evidence 
that a cis X-prolyl peptide bond predominates in solution. In­
dependent confirmation of our assignment of the cis prolyl residue 
to Pro 117 is detailed in the accompanying communication, in 
which sequence-specific assignments are used to detect and assign 
the cis geometry to the Lysu6-Pro1I7 peptide bond in the presence 
of Ca2+ and pdTp.18 Thus, we conclude that, in solution both 
in the presence and absence of ligands and in the crystalline state11 

in the presence of ligands, this X-prolyl peptide bond exists 
predominantly in the cis geometry. 

Our observation does not identify which structural feature(s) 
are responsible for the multiple conformations which are apparent 
via the resonances of the resolved histidine H1 protons. For 
example, the X-prolyl peptide isomerization may serve to slow 
the rate of interconversion between two conformations that differ 
in hydrogen-bonding networks or steric interactions rather than 
the isomerization itself being the driving force for two confor­
mations.7'10 
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The cleavage of phenyl acetates by cyclodextrins (CDs)1 in 
aqueous base is generally believed to take place from an ester-CD 
complex in which the aryl group of the ester is included in the 
cavity of the CD.1"4 Thus, other species that bind to the CD 
should inhibit the reaction by competition.23,5 Such is the case 
for the cleavage of m-nitrophenyl acetate (mNPA) by a-CD2a 

and, as described below, by |3-CD. In contrast, the cleavage of 
p-nitrophenyl acetate (pNPA) by /3-CD is not strongly retarded 
by various potential inhibitors (PIs), and in some cases the reaction 
is actually fasterl 

Studies of the inhibition of mNPA cleavage6 gave dissociation 
constants (ATj) in good agreement with values determined by other 
methods (Table I), but comparable studies with pNPA did not. 
Experiments with fixed [PI] and varying [0-CD] showed that the 
cleavage of pNPA is faster with added 1-butanol; it is not inhibited 
(Figure 1). Also, addition of 1-hexanol or cyclohexanol brings 
about rate increases, suggesting that there is a reaction between 
alcohols and the pNPA-CD complex. To obtain rate constants 
for this reaction, we carried out experiments with a fixed, high 
[CD] and varying [PI].7 As shown by the example in Table II, 
values of kobsi are very different from those expected for simple 
inhibition (k^). Analysis of such data was based on the following 
approach. 
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